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Introduction

Radiological experiments with cell cultures are expected to be performed on Lifesat to

study possible gravitational dependence on cellular response. Predictions of cell damage

rates for well-studied systems are expected to help guide in the selection of orbits and the

design of experiments. In this report we estimate the fractions of cell death and neoplastic

transformation of C3H10T1/2 cells (cultured mouse cells) for the proposed Lifesat orbits.

The parametric cellular track model of Katz et al. (refs. 1 and 2) is employed using cellular

response parameters derived from the experiments of Yang et al. (refs. 3 and 4). The

contributions to the biological endpoints from the trapped protons and electrons, and GCR

particles are considered for typical levels of spacecraft shielding. For the proton and GCR

contributions the effects of nuclear reactions are taken into account. Expected counting rates

for other possible cell culture experiments on Lifesat are discussed.

Cellular Response Model

Biological damage from heavy ions is caused by delta-ray production. In the Katz model

(ref. 1), cellular damage proceeds through two modes of response. In the ion kill mode,

damage occurs through the action of single ions, while in the gamma-kill mode, cells not

damaged in the ion-kill mode can be sublethally damaged from a passing ion and then

inactivated by cumulative addition of sublethal damage due to delta-rays from other passing

ions. The response of the cell is described by four cellular response parameters, two of which

(m, the number of targets per cell, and Do, the characteristic x-ray dose) are extracted from

the response of the system to x- or "pray irradiation. The other two (ao, interpreted as the

cross-sectional area of the cell nucleus, within which the damage sites are located, and _,

a measure of the size of the damage site) are found from survival measurements with track

segment irradiations by energetic charged particles.

The surviving fraction of a cellular population No, after irradiation by a fluence of particles

F is written (see ref. 1)
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where the ion-kill survivability is

N

= _-i× _-_ (1)

ri=e -aF (2)

and the gamma-kill survivability is

7r7 = 1 - (1 - e-D'ffD°) m

The gamma-kill dose fraction is defined

(3)

D 7 = (1-P)D (4)

where D is the absorbed dose and P is the fraction of cells damaged in the ion-kill mode,

given by

P=a/ao (5)

where a is the single-particle inactivation cross section.

For the mixed radiation fields seen in space the ion-kill term is written (ref. 5)

3

+ E E f dEjdEa¢c,(x, Ea;Ej)aa(Ea)
j a

(¢)

the subscript j and a label the projectile fragment and target fragment type, respectively;

(I) is the number of particles of a particular type with energy E at x per cm 2, and aj is

= _ (7)
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where fl is the particle velocity and z* the effective charge number. The first term on

the right-hand side of equation (6) then corresponds to the contributions from the incident

space radiation, including projectile fragments, and the second term from target fragments

produced from shielding materials. Similarly, the gamma-kill dose fraction becomes for the

space radiation case (ref. 5)

D._ = _ J dEj_j(x, Ej)(l - Pj(Ej))Sj(Ej)

E E / dEjdEaCa(x, Ea; Ej)(1 - Pa(Eo))Sa(Ea) (S)+

j

where S is the stopping power and where the first and second terms in equation (8)

correspond to the projectile and target ion contributions, respectively. The target terms

will be most important for low LET ions, where the direct ionization leads only to a small

inactivation cross section. Predictions of damage rates for the ion fields seen in space are

made after transport methods are employed to determine the differential flux of particles

at the biological endpoint (refs. 6 and 7). For damage from the trapped electrons, only

the gamma-kill mode operates and the electron dose determines the damage as given by

equation (3) with

0 7 = D. (9)

Radiation Environment for Lifesat Orbits

The trapped protons and electrons, and GCR particles contribute to the radiation

exposures seen in earth orbit. Schimmerling (ref. 8) has suggested the following orbits for

possible Lifesat missions:

(1) A polar orbit of 400 km perigee and 36,000 km apogee.

(2) An equatorial orbit of 400 km perigee and 36,000 km apogee.

(3) A circular polar orbit of 900 km.

(4) A circular polar orbit of 200 km.



We consider the evaluation of the exposures seen in these orbits for solar minimum, assuming

quiet geomagnetic conditions and Earth shadow shielding. The 200 km orbit may not be

stable against decay and is chosen to illustrate a minimum trapped proton environment.

The trapped particle spectra for these orbits are taken from the AP8 and AE8 models

(ref. 9). The GCR solar min environment is taken from the NRL CREME model (ref. 10)

with the corresponding transmission functions (calculated assuming quiet-time conditions

and including earth shadowing) for the orbits under consideration shown in Fig. 1. The

absorbed doses for the individual contributions is shown in Fig. 2 as calculated using

BRYNTRN (ref. 6) for the trapped protons, EDOSE (ref. 11) for the trapped electrons

(including bremsstrahlung), and HZETRN (ref. 7) for GCR transport. The trapped electrons

contribution to the circular orbits is small and their absorbed dose is not shown. Similarly,

the trapped protons were found to give only a small contribution to the 200 km circular

polar orbit and the polar elliptic orbit. The transmission factor for the polar elliptic orbit

allows for almost exact correspondence to the GCR free-space exposure.

Results for Lifesat Orbits

We consider the production of cell death and neoplastic transformations for C3H10T1/2

cells behind aluminum shielding, with tissue present locally, for Lifesat orbits of 60 days.

Waligorski et al. (ref. 2) have found cellular response parameters for these two endpoints for

both immediate plating and delayed plating experiments. Here we use the delayed plating

values which are listed in Table 1, along with cellular response parameters for some other

biological endpoints. The delayed plating model was used to account for the repair expected

for protracted exposure. Results are shown in Figs. 3 and 4 for cell death and transformation,

for the Lifesat orbits. Fluence levels for the GCR particles are such that only the ion-kill

mode contributes. The trapped protons show an important contribution from both the ion

kill and gamma kill modes. A pure GCR exposure could be obtained for the polar elliptic

orbit for shields of >4g/cm 2. To study the possible changes in repair mechanisms from

gravity, the elliptic equatorial or the 900 km circular polar orbit would be sufficient for the
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C3H10T1/2 system. Dose protraction effects (ref. 4) may become important for the highly

exposed proton orbits.

Production rates will have an exponential or shouldered response with mission duration,

corresponding to a changing dose for the GCR or trapped particles, respectively. The GCR

fluences are such that a linear production rate with mission duration may be assumed. In

Table 1, we also show cellular response parameters for cell killing and mutation of V79

Chinese hamster cells and HF19 Human Diploid Fiberblast cells. In comparing with the

C3H10T1/2 parameters we should expect that cell death experiments would occur with

approximately the same frequency for these two systems, while the mutation endpoints

would have production rates much smaller than that for C3H10T1/2 transformations.

Conclusions

Preliminary predictions of cell damage rates on proposed Lifesat orbits have been made

using the parametric cellular track model. The accuracy of the results depends heavily on the

radiation environmental models, the particle transport codes and assumption that delayed

plating effects are a good approximation to cell repair during low exposure rates. Cellular

parameters are available for a wide variety of cell systems, and the methods employed herein

could thus have a variety of application in planning and analyzing Lifesat experiments.

The methods of this work could be used for in vivo systems, if results from ground-

based experiments would be presented in a favorable fashion for obtaining cellular response

parameters. In regard to the low probability of cell transformation we must remember that

there are about 109 cells/cm 3 and that cancer induction may depend on the number of

transformed cells rather than the fraction of transformed cells. Information on the minimum

number of cells needed for tumor induction would also be highly regarded by the present

formalism.
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Table 1. Cellular Response Parameters

Endpoint m D, cGy ao, cm 2

Cell Death

for C3H10T1/2 3 280 5.0E-7

Transformation

for C3H10T1/2 2 26000 1.15E-10

Cell Death
V79 Chinese Hamster 2.5 159 6.9E-7

Mutation
V79 Chinese Hamster 3.5 5.94E6 5.75E-11

Cell Death
HF19 Human

Diploid Fiberblast 3 112 9.9E-7

Mutation
HF19 Human

Diploid Fiberblast

750

750

1400

1000

900

3.5 2.7E6 9.9E-11 1000
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Figure 1. Transmission factors for Lifesat orbits for quiet
magnetic field conditions.
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Figure 2. Absorbed doses for Lifesat orbits.
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Figure 3. Damage to C3H10T1/2 cells in 60 days.
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Figure 4. Damage to C3H10T1/2 cells in 60 days.
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